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Received 10 March 1976 

Abslract, The problem of the construction of coherent states of relativistic particles (bosons 
and fermions) in electromagnetic fields has been solved. The states discovered are exact 
solutions to the Klein-Gordon and Dirac equations; the wavefunctions of the particles are 
found in the homogeneous magnetic and electric fields and the Redmond configuration 
field, as well as in the plane-wave field. The main point is the use of the formulation of 
relativistic quantum mechanics on the ‘null’ plane. 

1. Inbroduction 

The coherent states of the harmonic oscillator were discovered by Schrodinger (1926), 
who pointed out that these states reduce the uncertainty relations for coordinates and 
momentum to a minimum. Special attention has to be paid to these states since the 
publication of Glauber’s work (Glauber 1963a,b). He pointed out that the coherent 
states of an electromagnetic field are especially useful in different problems in quantum 
optics. It is interesting to note that the coherent states of an electromagnetic field were 
introduced by Rashewski (1958), but his work is unknown to physicists. 

At the present time, it is known that coherent states can be constructed not only for 
oscillator (electromagnetic field), but for arbitrary physical systems as well. Malkin and 
Man’ko introduced the method of construction of coherent states for non-relativistic 
particles (Malkin and Man’ko 1968, 1970, 1971, Malkin et af 1970, 1973, Dodonov ef 
a1 1975). These authors found the wavefunctions of the coherent states of a non- 
relativistic electron interacting with different external fields, and thus calculated the 
Green functions. The main point of the Malkin-Man’ko method is the construction of 
annihilation operators (integrals of motion) based on the evolution operator of the 
system considered. 

In applying the Malkin-Man’ko method to the construction of coherent states of 
relativistic particles, we come across several problems. The method cannot be applied 
to the Klein-Gordon equation because of the absence of an evolution operator, and in 
the case of the Dirac equation several calculating difficulties arise. In our previous 
paper (Bagrov et a1 1975) we suggest a new approach to the construction of the 
coherent states of relativistic quantum theory on the ‘null’ plane (Kogut and Soper 
1970, Bjorken efaf 1971, Rohrlich 1970, Neville and Rohrlich 1971, Chang eta1 1973, 
Chang and Yan 1973). In the variables of the ‘null’ plane, the Klein-Gordon and Dirac 
equations are first-order equations dependent on some ‘time’. The evolution operator 
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can be introduced easily. In this paper we have constructed coherent states of 
relativistic particles in homogeneous magnetic and electric fields and in the Redmond 
configuration field (Redmond 1965) on the one hand, and in the plane-wave field on the 
other. These coherent states, which are exact solutions of the Klein-Gordon and Dirac 
equations, are of great importance in the calculation of various physical effects. For 
example, the Volkov solution of the Dirac equation in the plane-wave field (Volkov 
1935) is effectively used in relativistic quantum mechanics (see for example Nikishov 
and Ritus 1964a, b, 1967, Ternov et a1 1968). We hope that our new solutions will also 
be useful. 

2. The main points of relativistic quantum mechanics on the ‘null’ plane 

In the construction of coherent states of relativistic particles we shall use the formula- 
tion of relativistic quantum mechanics on the ‘null’ plane. The coordinates of the ‘null’ 
plane u p  are: 

x 0 + x 3  
U 3  =- 

J 2  * 

0 3  
0 x - x  1 1  2 2  =- U = x ,  U = x ,  

J 2  ’ 

On the null plane the Klein-Gordon equation is: 

where 

- aAp aAu 
up au‘ a U s  

F =--- 

and a, is the potential of the external field in the coordinate system connected with the 
coordinates u p  (equation (1)). The scalar product for the Klein-Gordon equation on 
the ‘null’ plane is defined as: 

Further, we will need an explicit expression fpr the coordinate operator for the particle, 
described by the Klein-Gordon equation on the ‘null’ plane. It is obvious that the 
multiplication operator U“ (n = 1,2,3) is not the Hermitian operator corresponding to 
the scalar product (3). However, we can construct the Hermitian operator for the scalar 
product (3) with all the properties of the coordinate operator. This operator is: 

4” = U” -@3’3(@u3)-’ (n = 1,2,3). (4) 

The operator (4) is the Newton-Wigner coordinate operator (Newton and Wigner 
1949) on the ‘null’ plane and is constructed as the Hermitian part of the operator U“ 
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corresponding to the scalar product (3). The Dirac equation on the 'null' plane is 

ih(a+(-)/auO) = xD+(-) 
+(-) = P(-)*, 

%fD='A,+-(?@j +mc)f3@i1(?@j +mc)fo ( j =  1,2) 

1 - 3  -0 P(-) = ZY Y 

1 
c 4  

The scalar product is expressed as: 

(6)  

Since the Klein-Gordon and Dirac equations are first-order equations in 'time' U', we 
can introduce the evolution operator U(uo, U'') in a general way. With the evolution 
operator U(u', U'') we can construct the operator integral of motion: 

I (uO)  = U(uO, O)ILT1(u0, 0) 

when I = a, where a is the annihilation operator, we shall have an annihilation operator 
integral of motion. 

3. Coherent states of relativistic particles in an electric field and the Redmond 
configuration field 

We consider the construction of coherent states for equation (2) where the potentials 
A, are: 

A,  =-f1(U0)+-U ch  H 2  , 
2 

A, = 0, 
e 

where fi = f,(u')(i = 0, 1,2) are arbitrary functions of U'. Such a choice of potentials 
corresponds to the electric field along the x3 axis and the Redmond configuration field. 
Equation (2) with potentials (7) becomes: 

fl, = dfo/duO. 

The operator i(a/au3) is the integral of motion for equation (8). The wavefunction q 
can be chosen as the eigenfunction for this operator: 
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For the function q5 from equations (8), (9) we get: 

We introduce the Bose annihilation and creation operators: 

We now construct the annihilation operator integrals of motion: 

C,(r) = U(r, 0)c,LT1(r, 0) (n = 1 , 2 )  

where U(t, 0) is the evolution operator for equation (10): 

0 duo I k3-f0(u0)' 
t = r ( u  ) =  

The operators Cn(t) can easily be found: 

Let us suppose the function 4 is an eigenfunction for the operators C,(t)(n = 1 , 2 ) :  

( 1 5 )  
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The wavefunction, which is the solution of equations (9), (lo), (15) and the normalized 
relative scalar product (3), is given by 

(16) -I/' ex(') 
$k32122(U) = Nd 

q = k ~ - f o  

4x = 2z1z2(1 -e-"") + 2i(y + ki) t  - y [ (u  + (U')'] -4ik3u3 + 2(pu ' - ievu') 

+ 2 z 2 4 Q  e-"' + 2 z 1 4 Q * - 2 y  lo' QQ'* dt -2i lo' ( f : +  f;) dt (17) 

The wavefunctions (16) form a complete system of functions with the following 
complete condition: 

On the basis of the functions (16) we can calculate the average values of coordinates 
U = x a n d u  = y :  1 2 

1 l *  
JY JY 

- -  
x (t) + iey(t) = -(z - &Q(t)) e-i"' + - z 2 I  

The average value (20) coincides exactly with the trajectory obtained from the classical 
relativistic equations for such a case. 

For the coordinates u l ,  u2 and corresponding momenta, the function (16) gives a 
minimum for the uncertainty relations. 

It is interesting to note that when y+O and fo+ 0 the function (16) is transformed 
into the Volkov solution (Volkov 1935) (to an exactness of No) for the particle without 
spin in the plane-wave field. However, the trajectory loses its meaning. 

In the pure homogeneous magnetic field it is necessary to insert f i  = O(i = 0, 1,2) in 
the expressions (16)-(20). In this special case the coherent states for the Klein-Gordon 
equation were found in Dodonov et a1 (1975), without using the 'null' plane method. 

The trajectory in a homogeneous magnetic field has a simple form: 

1 
X(t)=-(lzll cosS+Rez2) 

y(t) = --(/zll sin 8 -1m z2)  

S=yt-+o, z1 = Izl( e'+" 

JY 
E - 

JY 

describing the motion along a circle in the x, y plane. 
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The solution of the Dirac equation in the external field with the potentials (7) is 
obtained from the function (16) as a result of the action of the special matrix operator: 

B = el[& - q ( y  + i a )  - f l ]+ez [~v  -iy(y + i a )  +'fi]. 
el and e2 are unit vectors on the x and y axes. The arbitrary two-component spinor v 
defines the spin orientation and 2(vtv)N2 = hNi. The trajectory (20) is also the same as 
in the case of the Dirac equation. 

4. Coherent states in the plane-wave field for the Klein-Gordon equation 

Let us consider the case when, in equation (21, a0 = A3 = 0, A I  = Al(u0), A2 = A2(u0). 
Such a choice of potentials corresponds to the plane-wave field. Assuming the 
operators (14) and function (16) have y = 0 and fo = 0, we would be able to obtain all the 
results in this field. However, when y+O, the wavefunction is transformed into the 
Volkov solution, which is not a coherent state. Hence to find the coherent states in the 
plane-wave field we must use a different definition of the annihilation operators from 
that in ( 1 4 ) .  In the plane-wave field the Hamiltonian XK in equation (2)  is independent 
of operators u"(n = 1 ,2 ,3 ) .  Therefore it is more convenient to find the solution of this 
equation in the momentum representation. We can write the Fourier transformation of 
the wavefunction: 

Equations (2) ,  (3)  and (4)  in the momentum representation are: 

i(d$(k, uo/duo) = w ( k ,  uo)$(k, U') 

We shall construct the coherent states for the Klein-Gordon equation in two cases: 
when the operator g3 is the integral of motion and when 9, is not the integral of 
motion. 

4.1. Operator 9, is the integral of motion 

It is easy to see that the operator 9 3  is the integral of motion for equation (24). In this 
case, the solution for equation (24) may be chosen as the eigenfunction for it. In the 
momentum representation g3 = hk3. We assume 

hk3q = hL34 (25) 
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then 

+c3 = 6 ( k 3 - l d # I ( u o ,  k i ,  k2). 

The equation for the function #I is obtained from the equation (24): 

i(a4/au0) = ~ ( k ,  

S ( k ,  uO) = w ( k ,  uo) lk3=&3.  

where 

We will introduce the operators: 

The operators (28) are the Bose annihilation and creation operators. Using these 
operators (28) we can construct the integrals of motion: 

B,(uO) = U(uO, O)b,U-'(uO, 0) 
0 (29) 

U(uo, 0) = exp( -i lou duOG(k, U')). 

It is easy to show that: 

The coherent states are defined as the eigenfunctions for the operators B,(uo): 

B, (U O)(b = 5 9 .  J 2  (31) 

Equations (27) and (31) may easily be solved as a system. The wavefunction, which 
is the solution of equations (24), (25), (27), (31) and the normalized relative scalar 
product (24b), is: 

On the basis of the function (32) we will calculate the average values of momenta 
p ,  = hk, and coordinates U" = -i(a/ak,)(n = 1,2). The result is: 

0 p, (u  ) = -hko Im z ,  
( n  = 1,2) (33) 

so Re 2, and Im zn are the average values of momenta and coordinates when uo = 0. 
The second equation (33) coincides with the trajectory obtained in classical relativistic 
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mechanics. Taking the function (32) we can calculate the values of fluctuations of the 
coordinates and momenta. We get: 

The uncertainty relation has a minimum when uo = 0. It is known that the coherent 
states, constructed for the arbitrary quadratic Hamiltonian, reduce the uncertainty 
relation to a minimum when the Hamiltonian can be transformed to the Hamiltonian of 
the harmonic oscillator as a result of action by a unitary operator (Stoler 1970, Trifonov 
1974). This is impossible in the plane-wave field. 

We can show that the functions (32) form a complete system of functions with a 
complete relation: 

We should note that the wavefunction may be written in the coordinate representa- 
tion: 

1 
exp( - i13u 3 - i 5 u  0 )  

k o a [  1 + i(kg/k",)uO] 2k3 
% 3 L * L * ( ~ ,  uO) = 

e 
fn = 7 A n .  mc 

4.2. Operator @3 is not the integral of motion 

Suppose that the operator P3 is not chosen as the integral of motion. Then the 
Hamiltonian XK in equation (2) is not in quadratic form with respect to the operator 9, 
and we come across difficulties in the construction of coherent states. So far, not one 
paper has been published on the construction of coherent states for a non-quadratic 
Hamiltonian. 

As before, the coherent states will be constructed in the momentum representation. 
We will define the Bose annihilation operator (taking into account equation (4)): 

) (n = 1,2 ,3)  (37) 

and construct integrals of motion &(U') in accordance with the relations (29), where 

U(uO, 0) = exp( -i J duo@@, U')) 
0 

then: 

Bn(uo) = --("-+ i ko-+i-ko+iko a Iouo duoao(k' "") ( n  = 1,2 ,3) .  (38) 
4 2  ko ak, 2k3 akn 
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The wavefunction, which is the solution of equations (24) and (3 1) with the integrals 
of motionB,(uo) (equation (38)) and the normalized relative scalar product (24b) ,  is: 

1 2  kn k : )  (39) 
U 0  3 

xexp(-i Jo duOw(k, uo) n exp --Im z, +iz,--- 7 ),=, ( 2 ko 2 ko 
where 

2 "  
@ ( x )  = - I dt e-'* 

J.rr 0 

is the probability integral (Gradshteyn and Ryzhik 1971). The function (39) is the 
coherent state of the variables k l ,  kZ, k 3 ;  the system of functions (39) is a complete 
system. We can write the condition of completion as: 

With the help of function (39) we can calculate the average values of the operators p,  
and q, when uo = 0: 

- 1  
q"=-Rez,. 

k0 

If uo#O then: 

P,(UO) = K  

The average value dw(k ,  u0) /ak ,  is expressed through the integral which diverges and 
the trajectory loses its meaning. However, the function (39) is the exact solution of the 
Klein-Gordon equation in the plane-wave field and the system of these functions is a 
complete system of functions. 

5. Coherent states for the Dirac equation in the plane-wave field 

In the plane-wave field (A3=&=0)  the Dirac equation ( 5 )  coincides with the 
Klein-Gordon equation (2). Therefore, all the results obtained for the Klein-Gordon 
equation in the previous sections can be used for the solution of the Dirac equation. The 
bispinor ll/(-) in the momentum representation is: 

+(-)(k UO) = +(k U 0 P ( - ) U  (43) 
where U is an arbitrary bispinor, and the function +(k, U") is the solution of equation 
(24). The operator U" is the Hermitian operator relating to the scalar product (6) and 
may be considered as a coordinate operator. 
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The function + in the equation (43) may be chosen as a self-function either for the 
operators 8, and B,(uo) (n = 1,2) (30) or the operators B,(uo) (n = 1,2,3). The latter 
operators for the Dirac equation are: 

B,(uo)= --(-+ko-+iko i k, a jouu duoaw(k, U')) (n = 1,2,3). 
J2 ko ak, akn 

(44) 

If the function + is the eigenfunction for the operators 9, and B,(uo) (n = 1,2) we 
will have the normalized solution of the Dirac equation: 

x n 2 exp( --Im2z, 1 +iz,--- k, 1 T ) P ( - ) ~  k i  
n = l  2 ko 2 ko 

(45) 

where utP(-p = 1. The function (45) is a complete system, with a complete relation: 

Equations (33), defining the classical trajectory for n = 1,2 and the form of the 
uncertainty relation (34) have the same form for the Dirac equation. The quantum 
numbers z1 and z2 have the same meaning as in the solution (32). 

If the function +(k, U') is the eigenfunction for the operators B,(uo) (equation (44)) 
then the normalized solution of the Dirac equation is: 

The average values of coordinates and momenta, which have been calculated on the 
basis of function (47), are given by 

p,(uo) = -hko Im z, (n = 1,2,3) (48) 
- 1  

n) ( n  = 1,2) 0 un(u  

where 
Imz, -1 

K = lo dt e") . (49) 

The expression for U" (U') is not a classical trajectory as K f z / m c .  However, when 
Im 2 3  >> 1, K =  -1m 2 3  = E / m c  and un(uo)  coincide with the classical trajectory, the 
expression for the average value u3(u0)  contains the integral which diverges and the 
trajectory for u 3  is absent. 
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6. Condusion 

In this paper we have found new exact solutions of the Klein-Gordon and Dirac 
equations in the electric field and the field of Redmond configuration (16), (22) and in 
the plane-wave field (32), (39), (45), (47). These solutions are coherent states (eigen- 
functions corresponding to annihilation operators) either for some of the variables or 
for all variables. The main point in the construction of coherent states is the use of the 
‘null’ plane. This allows us to find the unified method of constructing coherent states for 
relativistic particles. All the solutions form complete systems of functions. 

If we consider the case when A,, = 0 in equations (32), (39), (45) and (47), we obtain 
the wavefunctions of coherent states of free particles. 

References 

Bagrov V G, Buchbinder I L and Gitman D M 1975 Izv. VUZ Fiz. No. 8 134-5 
Bjorken J D, Kogut J B and Soper D E 1971 Phys. Rev. D 3 1382 
Chang S -J, Root R G and Yan T -M 1973 Phys. Rev. D 7 1133 
Chang S -J and Yan T -M 1973 Phys. Rev. D 7 1147 
Dodonov V V, Malkin I A and Man’ko V I 1973 Teor. & Mar. Fiz. 24 164-76 
- 1975 Preprint PhIAN N 60 
Glauber R J 1963a Phys. Rev. 130 2529 
- 1963b Phys. Rev. 131 2766-88 
Gradshteyn I S and Ryzhik I M 1971 Tables of Integrals, Sums and Products (Moscow: Nauka) 
Ivanova E V, Malkin I A and Man‘ko V I 1975 Yad. Fir. 21 664-73 
Kogut J B and Soper D E 1970 Phys. Rev. D 1 2901-14 
Malkin I A and Man’ko V I 1968 Zh. Eksp. Teor. Fir. 55 1014-25 
- 1970 Zh. Eksp. Teor. Fiz. 59 1746-54 
- 1971 Teor. &Mat. Fiz. 6 71-7 
Malkin I A, Man’ko V I, and Trifonov D A 1970 Phys. Rev. D 2 1371-85 

Newton T D and Wigner E P 1949 Rev. Mod. Phys. 21 400 
Neville R A and Rohrlich F 1971 Phys. Rev. D 3 1639 
Nikishov A I and Ritus V I 1964a Zh. Eksp. Teor. Fir. 46 776-96 (1964 Sou. Phys.-JETP 19 529) 
- 1964b Zh. Eksp. Teor. Fir. 46 1768-81 (1964 Sou. Phys.-JET 19 1191) 
- 1967 Zh. Eksp. Teor. Fir. 52 1707 
Rashewski P K 1958 Usp. Mat. Nauk 13 3 
Redmond P I 1965 J. Math. Phys. 6 1163 
Rohrlich F 1970 Analytic Methods in Mathematical Physics, Bloomington, Indiana 1968 (London: Gordon 

Schradinger E 1926 Natunviss. 14 664 
Stoler D 1970 Phys. Rev. D 13217-23 
Ternov I M, Bagrov V G and Khapaev A M 1968 Ann. Phys., Lpz. 22 25 
Trifonov D A 1974 Phys. Lett. 48A 165-6 
Volkov D M 1935 Z. Phys. 94 250 

- 1973 J. Math. Phys. 14 576-82 

and Breach) pp 279-302 


